
Efficient R programming

the rolygon example

Torino April 2013 Andrea Spanò

Introduction

? This brief tutorial illustrates how to combine S4 object oriented

capabilities with function closures in order to develop classes with

built in methods.

? In practice, we want to write highly reusable code in order to increase

development and maintenance efficiency

? Finally, a great thank to Hadley Wickham for the great contribution

of material and tutorials made available on the web and to Bill

Venables and Stefano Iacus for their kind support.

Efficient R programming , the rolygon example 2 / 15

Introduction

Table of Contents

1 Regular polygons and R

2 Function Closures

3 Let’s put all together

Efficient R programming , the rolygon example 3 / 15

Regular polygons and R

As Wikipedia states: In Euclidean geometry, a regular polygon is a polygon

that is equiangular (all angles are equal in measure) and equilateral (all

sides have the same length). Square, pentagon, hexagon are regular

polygons.

Within R we would like to have simple functions like:

> e1 <- heptagon(s = 1)

> plot(e1)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

Efficient R programming , the rolygon example 4 / 15

Regular polygons and R

Previous call is the result of a simple S4 methods and classes
implementation:
> setClass("heptagon", representation(s = "numeric"))

> heptagon <- function(s){new("heptagon", s=s)}

> setMethod(f = "plot", signature = "heptagon",

definition = function(x, y){

object <- x

s <- object@s

n <- 7

pi <- base::pi

rho <- (2*pi)/n

h <- .5*s*tan((pi/2)-(pi/n))

r <- sqrt(h^2+(s/2)^2)

sRho <- ifelse(n %% 2 == 0, (pi/2- rho/2), pi/2)

cumRho <- cumsum(c(sRho, rep(rho, n)))

cumRho <- ifelse(cumRho > 2*pi, cumRho-2*pi, cumRho)

x <- r*cos(cumRho)

y <- r*sin(cumRho)

par(pty = "s")

plot(x, y, type = "n", xlab = "", ylab = "")

lines(x, y, col = "red", lwd = 2)

points(0, 0, pch = 16, col = "red")

grid()

invisible(NULL)

}

)

Efficient R programming , the rolygon example 5 / 15

Regular polygons and R

With this mind set we would have to define a new class, function and

method for each polygon ...

> setClass("penthagon", representation(s = "numeric"))

> penthagon <- function(s){new("penthagon", s=s)}

> setMethod(f = "plot", signature = "penthagon",

definition = function(x, y){

object <- x

s <- object@s

n <- 5

....

invisible(NULL)

}

)

p1 <- penthagon(s=1)

plot(p1)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

●

This could become a quite boring job. Moreover, despite the number of

cases we may take into account, we are pretty much sure that sooner or

later we will need something more ... a hendecagon (11 sides) or a

enneadecagon (19 sides).

Efficient R programming , the rolygon example 6 / 15

Regular polygons and R

We could accept some compromises and

write a generic schema:

> setClass("rolygon",

representation(n = "numeric", s = "numeric"))

> rolygon = function(n, s){new("rolygon", n= n, s=s)}

> setMethod(f = "plot", signature = "rolygon",

definition = function(x, y){

object = x

s = object@s

n = object@n

...

invisible(NULL)

}

)

> h11 = rolygon(n = 11, s = 1)

> plot(h11)

but this is not what we

wanted we do want:

> h11 = hendecagon(s = 1)

> plot(h11)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Efficient R programming , the rolygon example 7 / 15

Function Closures

Table of Contents

1 Regular polygons and R

2 Function Closures

3 Let’s put all together

Efficient R programming , the rolygon example 8 / 15

Function Closures

? Any time a function is called, a new environment is created, whose

enclosure is the environment where the function is defined. The

computation, as expressed by the body of the function, occurs in the

newly created environment.

? Thus, whenever we call a function we have at least two environments:

the environment the function was defined in and the environment

where the function evaluation takes place.

? By using this idea, we can define a function f() that returns a

function g().

? As g() is created within the evaluation environment of f(), this last

environment is the enclosure of g(). Therefore, g() remembers all

symbols bound to that environment.

Efficient R programming , the rolygon example 9 / 15

Function Closures

As a practical application of this

idea let’s consider a function f()

that returns a function g():

> f <- function(x) {

g = function(y){x+y}

g

}

As g() is created within the

evaluation environment of f(), g()

”remembers” the value of x.

Therefore we can define a simple

function f1() that adds one to the

given y argument

> f1 <- f(x = 1) ; f1(y = 3)

[1] 4

Note that f1() remembers the value

of x

The environment of f1() can be

directly accessed and manipulated:

> ls(env=environment(f1))

[1] "g" "x"

> get("x", env=environment(f1))

[1] 1

> environment(f1)$x <- 0

> f1(1)

[1] 1

The same exercise apply to any

fx() such as f99

> f99 <- f(99)

> f99(y = 1)

[1] 100

Efficient R programming , the rolygon example 10 / 15

Function Closures

An other example consists of a simple

estimate() that generate specific l()

functions for maximum likelihood estimates

estimate = function(dist, theta){

estimate = function(x){

neglik = function(theta = theta , x = x, log = T){

args = c(list(x), as.list(theta), as.list(log))

neglik = -sum(do.call(dist, args))

neglik

}

optim(par = theta, fn = neglik , x = x)

}

estimate}

Once we have estimate(), we can use it to

define any l() function as long as its d()

exists

That is, we can now write a

lnorm() that computes mle

estimate as simply as:

lnorm = estimate("dnorm", theta = c(mean(x), sd(x)))

lnorm() is a new function that can

be used as:

x = rnorm(100, 7 , 2)

lnorm(x)$par

[1] 6.803764 1.704783

Similarly, for a poison distribution:

lpois = estimate("dpois", theta = c(mean(x)))

events = rpois(1000, lambda = 22)

lpois(events)$par

[1] 22.02248

Efficient R programming , the rolygon example 11 / 15

Let’s put all together

Table of Contents

1 Regular polygons and R

2 Function Closures

3 Let’s put all together

Efficient R programming , the rolygon example 12 / 15

Let’s put all together

? The combination of the two

previous ideas allows quite

interesting coding techniques.

? We define a rolygon()

function that returns a generic

f() capable of generating

specific regular polygons with

plot method inherited from

rolygon’s environment:

> rolygon <- function(n) {

Define rolygon class

setClass("rolygon",

representation(n = "numeric", s = "numeric"))

Define a plot method for

#object of class rolygon

setMethod(f = "plot", signature = "rolygon",

definition = function(x, y){

object <- x

s <- object@s

n <- object@n

...

invisible(NULL)

})

Define a function that returns an object

of class rolygon

f <- function(s){new("rolygon", n = n, s = s)}

Return the newly created function

return(f)

}

Efficient R programming , the rolygon example 13 / 15

Let’s put all together

Now, we can easily define any polygon we need with no extra coding

heptagon <- rolygon(n = 7)

e1 <- heptagon(1)

plot(e1)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

circumference <- rolygon(n = 10^4)

plot(circumference(s = base::pi/10^4))

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

●

Efficient R programming , the rolygon example 14 / 15

Contacts

Andrea Spanò

Quantide

Tel: (+39) 347 747 04 92

Mail: andrea.spano@quantide.com

Web: www.quantide.com

Efficient R programming , the rolygon example 15 / 15

	Introduction
	Regular polygons and R
	Function Closures
	Let's put all together
	Contacts

